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Equatiom of perfect fluid hydrodynamics are classified with respect to the Cori- 
ol/s parameter, and all essentially different solutiom of rank one are indicated. 

1 .  S t & t a m l n ~  o f  t h e  p r o b l e m .  Let x and y be Car~..sian coordinare~, u 
and v the velocity components along the x and y axes, respectively, and p the pres- 
sure ; the density p is assumed comrmnt and equal unity. We consider systems of equa- 
tiom of the form 

uu, ,  + v r t y - -  l v  ---- - -  p~:, t tv~ + ~ , ,  + t t t  = - -  p v ,  ~ + v v - - - - O  (1.1) 

in which the parameter l (y) can be an arbitrary function of ~/. For an arbitrary I (y) 
system (1.1) admits a certain group of transformatiom G. The special forms of hmction 
Z (y) for which the fundamental group admitted by system (1.1) is wider than G are to 
be determined. 

Equations ( I .  I) are encountered in meteorological p~oblerm in which the terms lu 

and lo represent components of acceleration produced by the Coriol/s force owing to 
the rotation of Ear~, and I (y) is the Coriol/s parameter. For I = 0 ~Tstem (I .  1) coin- 
cides with that of the mual equations of hydrodynamics o f  a perfect fluid. The determi- 
nation of the group for this case is given in [ I ]  on the assumption of um~ady flow. 

Besides the determination of the group of transformations we shall derive solutions of 
rank one, k e. such which reduce their derivation to the integration of ordinary differen- 
tial equations. Some of these solutiom were obtained earlier, for instance, in [2] solu- 
tions with spiral su~amlines are indicated. In the present paper the l~oblem of group 
cla.~iflcation of system (I .  1) is solved, optimal systems of one-parameter sub~oups are 
de~nulned,  and all essentially different solutions are indicated. Since the required mech- 
anism of group analysis is presented in [3], many i n . m e d i a t e  computations are omitted. 

~.  C l a u i f i o a t i o n  o f  ~ q u a t i o n | .  To calculate the coordinates of rbe  infi- 
nitesimal operator of the group admitted by system (I .  1) it is necessary to wrim out the 
so-called defining equations and to solve these.  

1) For any arbitrary function ~ (y) the basic operators of the related Lie algebra 
are of the form 

X~ ---- 8 / ap, X= = 0 1 0 z  (2 . i )  

The analysis of determining equations for other forms of function l (.y) yields the 
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following results: 
2) if  l = y ~ - I  (m-T-  i ) ,  operar~ 

a ~ ~ ~ ~ my - ~  + 2mp a (2.2) X s  ~ = z ~ + y - ~  , m u  au ' " ~  

is added to the operators(2.1); 

3) if I ---- e " v  (m =I= 0), operator 

Xs"  = ~ ' " r "  m u - g ~  + mv.-~v + 2 m p  v,. (2.3) 

is added to operators (2.1); 
4) if  L = i ,  the fundamental group is generated by five operators with three 

o~rators a a u __a v ---~ a (2.4) 
X s s = z ' ~ + Y ' ~ ' y  + a- + av +2p-g~  

0 a 0 O 0 
X , ' =  -~- , X . = - -  y ~-~ + z "~- - -  v ~ + u o'~ 

added to (2. I), and 
5) if  / = O, the group is generated by six operators with operators 

a 0 0 
Xs' = z ~  + y ~ ,  X~ = o-'~" 

o o o o (2.5) 
X s =  - -  y '~x  + z ' ~ ' - -  v ' ~  + u 0"7 

X3 = u + v ~ - - ~  2p 
added to (2.1). 

3,  $ o i t ~ i o n  f o r  Z =~= eonst .  Let m construct the essentially different solutions 
for the first three c a s e s .  For this it is necessary to determine the optimum systems of 
one-parameter  subgroups and iu te~a te  the derived equations. The following notation 
is used henceforth: Uo, v 0 and p0are  arbitrary constants, and / is an arbilzasy function 
of its argument., 

3. 1. If l (y) is an arbitrary function, the optimum system is generated by operators 
(2. I ) .  The subgroup with operator X I  is el/minated, since for it the necessary condition 
of the existence of an invariant solution is not satisfied, while the subgroup with operator 
X2 provides a solution dependent on y. The substitution of these into E~.  ( I .  I )  yields 
the system 

vu '  - -  lv = O, w '  -.~ lu = - -  p ' ,  v' = 0 

where the prime denotes differentiation. From the last equation we have v = v0. For 
v0 ,=~ 0 the integration yields 

u = U o + ~ . ( y ) ,  P = P o - - I / 2 ~ . ~ + U o ~  (Z'(y) = l ( u ) )  

If, however, Vo = O, then 

u = u o + ] ( y ) ,  P = P o ~ - ,  S I ( y ) [ u o + / ( Y ) ] d Y  

In the first case the streamlines are defined by formula 

Uoy - -  VoX + ~ ~ (y) dy = con.st 

and in the second the streamlines are in the form of straight lines parallel to the x-axis .  
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3.2. For / - -  y,,-x the optimum system is generated by operators X1, X31 and 
X¢ -~- ~ X , .  The solution for the subgroup with operator Xs  1 is of the form 

u = z " U ( D ,  v = z " V ( ~ ) ,  p = z ' ' P ( D , ~  = y / z  

The last subgroup yields a solution of the form 

u =U(y), v=V(y), p =az+P(y) 

Substituting into ( 1 . 1 )  and integrating, we obtain the following solution: 

i ym__a 
u = u0 + ~ ~E" y' v = Vo 

t a y,m+l "o um 
P = Po + az -- ~ yz,~ + vo' (m +i ) -- ~" 

It is assumed that in this case m =1~ 0 and m 4= - -  t .  
In meteorological ~oble rm the Cortolis parameter is often aplxoximated by a linear 

function, which caa~ponds  to ,n = 2. In this case the streamlines are cubic parabolas, 
and the solution may be treated as defining a "crest" type of flow. Meteorological obser- 
vat iom show that such flows resutt in the formationof'fronts with abrupt change of weather. 

If m ~ O, the solution is of the form 

ct 
U = Uo + In u -- v-~ y, V = Vo 

i = 
P ---- Po + ~ - -  - f  lnS Y -}- ~ y - -  % In y 

and for m = - - t  i 

1./ Vo 

t a ue 
p =  p 0 + a z - -  ~ + V o l a y  + ~  

3.3. Let us consider the group for which I = e my. The optimum system of one- 
parametric subgroups is generated by operators a X  x -~- Xs and ms z -~- ctx+. 

The first subgroup yields solutions of the form 

u = U (y),  v = V" (y),  p = a z  + P (y) 

Substituting into system (1.1) and integrating, we obtain 

tt ~--- U o ~ ~m emu 

p = po + ~ + ~ ~ (m~ - t )  - -  - - -  

which is similar to r ~ t  for the crest type of flow. 
The solution for the second subgroup is of the form 

U ~  U 0 

t "~ n'~o I e my 

u = e"vO (D, v = e ' V V  (D, p _- es~Vp (~), ~ = y - -  ~ z  

and the unknown functiom satisfy the following system of equations: 

UU' + V (mU -- aU') -- V = -- P" 
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UV' + V (mV --aV') + U =--2raP+ aP' 

U' + mV --aV' =0 

One of  the solutions of  this system is 

U = a -~- Vo eke, V = Vo e ~ ,  P = bvo ek~ - -  a/2xa 

a =  ( = - - i ) '  b =  i - - ~ '  k =  m 
m ( a  a - -  2 ~  - -  i )  ' m ( = z  _ 2 a  - -  i )  ' ~ - -  i 

The streamlines ~p = c o n s t  are specified (correct  to within the shift along them-axis)  

( o ) by the formula = -  i In  c o n s t  - -  ~ - e  my 
X----- y m= 

and represent a set of  curves tending to a straight line. This solution can simulate the 
flow in a cumulat ive stream, 

4 .  S o l u t i o n 8  f o r  c o n J t t n t  C o r i o l l 8  p a r a m e t e r .  Before proceeding with 
the construction of  solution for I ----- t and Z = O, we note that the input system (1.1) 
for a constant Coriolis parameter can be replaced by its equivalent system by the substi- 
tution of  the vormx ~ ----- u v - -  ~'= for one of  the unknown functions, For (~ = 0 system 
(1.1)  is equivalent  to the Caucby-Riemann equations u~ - -  v= = 0 and u x  ~ vu=O,  
which admits an infinite group of  ~amfccmat iom.  Became of  this we shaU subsequently 
seek only such solutions in which the vortex is nonzero.  

Below it will be necessary to use the input equatiom in polar coordinates 

x = r c o s ~ ,  z/ = r s i n O ,  u ff i=wcoscp,  v = w s i n ~  

The expressions for the vortex and the sU~am functions in these coordinates are 

e) = cos (q~ - -  '~) ( +  w .  - -  wq~r) - -  s in  ((p - -  "~) (wr '--;- .7  (p.) , w 

~, = - -  w ~in (¢p - - 0 ) ,  r - '  ~ = w cos (¢p - - ~ )  

The arbitrary constants of  integration of  equations in polar coordinates are denoted by 

w0, P0 and ~ 0 .  

4. 1. Let us consider the solutions for l = t .  The opt imum system is generated by 
seven operators 

XI, X~, X, 3, Xs, XI + X~, X2 + Xs, X, 3 + aX5 (4.1) 
Let us write Eqs. (1 .1)  in polar coordinates. By combining these and taking into account  
r r igonome~ic  identities, we can obtain the following system : 

w2 I P~ 
- -  q ~  + w s i n  ((p - -  ~ )  = p,, w ~ ,  + w ¢ o s  ((p - -  O)  = r 
r (~.2)  

cos ((p - -  ~) [w~ + 7" ~* - -  s in  (¢p - -  O) w(Pr - -  "7 w~ = 0 

In the same variables the operators Xa  a and X s assume the form 

a o "~D o o 
X~=r~7÷w~.~-.?, 2 p _ ,  X~= 09 ! a~ 

4. I . I .  The subgroup with operator X x does not yield invariant solutions, since the 
necessary condition for the existence of  such solutions is not satisfied. 

4 . 1 . 2 .  The subgroup with operator X~ yields solutions which depend only on y. 
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Integrating E~. (1.1) we obtain 

u ~ - u  o-~- y, v -~Vo ,  p ~ p o  - - t / z Y 2  - - u e y  ' if v o ~ O  

u • - - / ' ( y ) , v = O , p  = ] ( y ) ,  if ~,o = 0  (4.3) 

In the first case the vortex co = t and the s~eamlines am repreu~nmd by a set of para- 
bolas. In the second, co _-- _ / "  and the su~amLines are straight lines parallel to the 
x-axis. 

4 .1 .3 .  For the subgroup with operat~ Xa s we seek the solution in the form w ----- 
r W(O) ,  ~p = ~) ( 0 )  and p = r a P (~). Substituting into (4. 2). we obtain equations 

W ~ ¢ '  + W sin ( ¢  - - 0 )  = 2 P ,  W c o s  ( ¢ - - 0 )  = - - P '  

cos (q) - - 0 )  W (i + ~ ' )  ~ sin (~) - - 0 ) W '  ---0 

In integrating this system we must consider two cases, depending on whether ~)' is zero 
or not. For ~ '  _ 0 the solution is of the form 

w = w o r s i ~ ( O  - - ~ o ) ,  ~ =q~o 

wo ra sin~ (~ - -  ¢Po) p = - - - ~  

It can he shown that co = w o. This solution yields streamlines which ate parallel 
straight lines at angle ~o to thexo-axis. Since the direction of coordinate axes was not 
specified, the x-axis  can be made to coincide with that of the velocity vector, i. e. we 
can set ¢P0 = O. The absolute value of the velocity vector is proportiomtl to y. 

The second case. in which (1)' ,=~ 0 yields a solution which can be written in the para- 
metric form 

V ap, w a r  : + i '  

p = r~IPo+ 

= % -4- ~ amsin 

For the vortex and the s ~ a m  function we 

too 

i I / Z  
a=Y~'wo F 2 ' 

= 0 + am sin Wo y - - - ~ /  

, + 2 (4.4) Wo .:-4"i V 2 / 

(i - -  2Wo s) (: + i) - -  2wo: 

(z + i) ) / i  - -  "4~'o" 

have 

z + 2  
: + 1  = - -  ~Po + a r 2 - -  b r ~ s i n ( 2 0 - 2 ~ o )  

VgV b = 4~--~o - -  

By a suitable selection of the direction of coordinate axes it is possible to obtain To 
equal zero. The streamlines are then defined by formula 

a (x a + ys) _ 2 b x y  + cons t  ---- 0 

i .e .  they are represented by a set of ellipses in a system of coordinates turned by 45*. 
4 .1 .4 .  The subgroup with operator X 5 yields solution of the  form w ~ W (r) ,  

cp = 0  -~- (D (r) and p ___ p (r). Substituting into (4. 2) we obtain the system 

t_ W~ + W sin (I) = P',  WS~ ' + W cos ~ = 0 
r 

i W) - -  sin O W ~ '  = 0 (4.5) oos ~ (W' + -7 
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The last equation yields the 
general solution 

first integral r W  cos ¢1) == w 0. We can now write the 

1 + (~o ~__'V - 2 ~ o / '  ~ = 0 +  arc t , ( ¢o -  ~ )  

~' - - ( t  + ~o s) ~ P =  p o - -  T ~-~ 

The streamlines ~ :q~0 I n - - l / ,  rs / w0 ~_ cons t  are repre~nted by a set of spiral 
lines with a sot~ce (w0 ~ 0) or sink (w 0 ~ 0) at the co~dinate  origin, For w0cP0 < 0  
the angle ~ along the streamline monotonically varies, while for Wo~0> ¢ the mono- 
tontcity b~aks  down. It  can be shown by direct calculation that for such flow the v m ~ x  
is constam and equal unity. A similar solution was ]~eviomly derived in meteorology 

4 .1 .5 .  For the subgroup with operator X I  ~- X2 the solution is sought in the form 
u : U (y), v ----- V (y) and p : :~ ,~- P (y). Substitution into Eqs. (1.1) and inte- 
gration yields 

_ _  V o m t  
u - -  Uo t 7 Y ,  v = Vo 

vo - -  ~ .S vo - -  i 
P - -  Po ÷ z + Uoy - -  ~ . ,  co = 

If vo =~- t .  the vortex is nonzero, and the su~amlines are parabolas with their axis 
parallel to the z -ax i s .  Note that in these formulas v0 =~ffi 0, since otherwi~ system 
(1.1) becomes incomistent. 

4 .1 .6 .  For the subgroup with operator X1 -~- X6 the solution is of the form w - -  
W (r), q~ ----~ + • (r)and p -----~ + P (r). 

The unknown functlom are determined by system (4. 5) in which ~ I  / r is to be sub- 
stituted into the right-hand side of the second equation, Integration of obtained equa- 
t iom yields the solution 

w=W°r t ' % - -  ~ r  2 

it'0 2 
i~ ~ _ (i -I- ¢Po ~) ¢Po In r p = P o + ~ - -  I - -  wo2/8 ~-- 

The solution is similar to that derived in 4. t .  4. and the vortex w - -  t -~- t / w o is 
throughout nonzero. 

4 .1 .7 .  The last subgroup with operator Xs s J -  a X 5 generates a solution of the form 
w = r W ( ~ ) ,  ¢p = ~  + ¢ (~) and p = r  s p  ( ~ ) , w h e r e ~  = r e  -~. 

4. 2. Let us pass to the derivation of solution for 1 == 0. Equations (1.1) in polar 
cocmtinates are of the form 

-7 q~ = P ' ,  wh~, = - -  "7 P~ (4.6) 

w 1 

In certain instances the last equation will be presented in a somewhat different form by 
the substitution for the derivatives of ¢p of their expressions in the first two equations. 
Note that in polar coordinates operators ~'~'3 a and Xe are of the simpler form 
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X 3  4 = r o-~ ' ~.w "~p 

The op t imum system of o n e - p a r a m e m r  subgroups is generamd by e leven  opera ton  which 
for convenience  are divided into two classes 

i) X2, X, 4, Xs, X,~+ X6 
2) Xl + X2, Xz + X,t X2 + X,, X 1 + X5 

XI + X,'+ Xs, X3'+ X,, X5 + X, 

Direc t  ca l cu la t ion  shows that  operatom of the first c l a n  y ie ld  solutions which define 
v o r t e x - f ~ e  flows only, hence ,  in accordance  with the previously stated,  we restr ic t  the 
analysis to operators of  the second class. 

4. 2. I .  The subgroup with operator  X 1 4-  X~. y ie lds  a t r iv ia l  solution u - -  u 0 
y / v 0' v = v o and P = P0. The s t reamlines  are parabolas with their  axis pa ra l l e l  
to the x - a x i s .  The constant v 0 is nonzero,  since otherwise system ( I .  1) becomes  incon-  
sJ~tenz. 

4 . 2 . 2 .  For the subgroup with operator  X z 4-  X~ 4 we seek the solution of the form 

w = W ( 0 ) ,  q~=(D ( 0 )  and p = In  r -+- P ( 0 ) .  After substitution into (4 .6 )  we 
obtain 

W~ ' =I, cos (~D --0) W~' + sin(CD--O) W' =0, P =Pc 

We use the first of  these equations for de te rmin ing  W in terms of ~ and reduce the 

second equat ion  to F "  = 2 (i 4- F')  z c t g  F by in~oduc ing  the new function F ----- 
(~) - -  ~ and substituting F for W . The order of this equat ion is reduced by one by 
set t ing F '  -~- z (F ) .  The lower order equat ion is in tegrated and yields  the following 
dependence  of  F on z : 

wo s ins  F = (z 4-  t )  e x p  

Let us consider  z as a pazameteL which reduces the der ivat ion  of solution to the deter°  
ruinat ion of  one quadrature.  The solution i tseff  can be presented in the pa ramet r i c  
form 

w = ] / ' ~ ,  ¢p = 0  4-  F (t) ,  P = P0 4-  In  r 

P (t) = arosin ~-~---$], 0 = ~0 - T V , , , o t e - ' - -  i ' t = 

The vortex ¢0 = - -  ] / '~oe"t t , / r  is t tnoughout n o n , t o .  The s t reamlines  are repre-  
sented by a set of spiral  lines, and the solution exists only for w0/~" e. 

4. 2 .3 .  The subgroup X?  4-  X ,  generates a solution of  the form u = e x U (y) ,  
v = • = V (y) and p = e *x P (y).  The substitution of these expressions into ~qs. (1.1) 
y ie lds  

V V "  - -  V '~ = 2/)o, P = Pc (4.7)  

I f  Po ----- 0, then the solut ion has the form u = - -  U,Uo ex+rov, v = Uo e'~:+v°~, P ----- 0 
and the s lzeamlines are straight lines x @ roy --~ c o n s t .  But i f  Pc =~ O, the second 
of Eqs. (4. 7), after single integration, yields 

V '2 = A I  r '  - -  B (4 .8)  

where A and B are arbi trary constants. Severa l  cases must be considered,  depending 
on the signs of  A and B .  

1) If  A ------ Vo ¢ and B / vo 2 ---- - -  P o  ~ me solution is of the form 
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u = - -VoPo  e~ ch (roy + Uo) 

v = po e~ sh (roy + Uo), p = - -  x/2 v / p . ~ e  s= 

If P0 < 0 and vo ~ 0, the streamlines approach the straight line y ffi Y0 = - -  
u0 / vo; if, howev~. P0 ~ 0 and v 0 < 0, the s~reamlines move away from the 
s~aight Line y ----- Y0- Other combinations of these inequalities yield a similar flow 
pattern, except that the direction of the velocity vector changes to opposite. 

2) When A = vo ~ and B / vo ~ = p0 ¢ , the integration of Eq. (4. 8) yields the 
solution 

u - - - - -  - -  VoPoe x sh (roy + Uo) 

v = po e= ch (you + Uo), p = z/~ Vo~PoZeS= 

The su'eamHnes have me szzalght Line Yo - - - -  Uo/Vo as their vertical tangent and 
resemble a flow of the crest type. 

3) If A = - -  Vo ~ and B / Vo ~ =- po ~ . the inmgration of (4. 8) yields 

u = - -  Vopoe = cos (v0y + Uo) 
v f f i  po e= sin (roY + Uo), p = _ _ z / ~  Vo 2 pose2= 

The solution is periodic with respect to y . The flow is divided into bands rE/v o wide 
inside which the direction of the velocity vector monotonically changes to opposite 
along the su~amlines from one boundary of the band to the other. The flow resembles 
that with "contact discontinuity" of equations for a compressible fluid. 

The vortex is defined by formula (o = Po (Vo 2 - -  l )  e = sin (roy -~- uo).  For 
I v0 ] :~: I the vortex is nonzero. For the first two cases it is nonzero for any values 
of the constants. 

4 .2 .4 .  For the subgroups with operator X z ~- X s the solution is sought in the form 
w --- }V (r), ~f = 0  • (~ (r) and p -----~ ~- P (r). Substituting into (4. 6) and in- 
tegrating, we obtain the following solution 

( ( w = - -  1-+- % - -  ~ /  , ¢ 9 = ~ - + - a r c t g  % - -  

¢ 2- wo2 
i r" (i+ Po)2-W %Inr p = po-v- ~ + g~o 

The comrant w0 is assumed zo be nonzero, since otherwise the system of equations 
would be inconsistent. The vortex is determined by co -- I / w0. and the solution is 
similar to that derived in 4.1.4. 

4.2.5. The solution generated by the subgroup with operator -¥x q- Xs ~ "~- Xs 
can be represented by w =W (~),  ~c =~ ~- 43 (~) and p =~ ~- p (~),where 

= re -a is the new indet~ndent variable. 
4. 2.8. For the subgroup with operator X3 4 ~- X e the solution is specified by for- 

mulas w ~ rW (0), q) = ~ (0) and p = r s P (0), where the unknown functions 
are demrmined by equations 

P ----Po, 14~cl)' _---2 Fo, cos ((1) --0) (W ~+ 2p0) +sin(Oh --~) W-W" = 0 

For P0 -----0 the solution of thissysmmls wworsin(~%),cp ~% andp =0, 
which in the sysrern of coordinates turned by angle % corresponds to the Couet~e type 
flow. If P0 =¢= 0, the solution can be presented in the pazame~ic form 
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f " / w  z . 2  ~, W = r V 2po 
: i ,  = 

t (t - -  2wo:) (z -'- t) - -  2u'~: 
p = P o r " ,  b = (Po - -  ~ arcsin 

(: + t) ¥ t - -  4wo'- 

This solution is the same as (4. 4). except for the exvression for pressure. 
4 .2 .7 .  The last subgroup with operator X~ + -Ye generates the solution 

e ~ W (r),  q~ = 0 + (I) (r) and p = e ~* P (r).  

w 
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The self-similar axisymmetric problem of pene~ation of a blunt rigid cone into 
a half-space of perfect compressible fluid is considered in linear formulation. 

The problem of penetration of a blunt cone into an incompreuible fluid was 
investigated theoretically [ 1 - 4 ]  and experimentally [3, 5]. This probkm was 
solved for a compre~ible fluid in [6] on the assumption that the radius of the 
intersection circle between the cone and the unperturbed fluid surface incu~ases, 
when the pene~ation velocity exceeds the speed of sound in the fluid (the super- 

sonic case). 
An exact analytical solution of this problem in the subsonic case is derived 

here with allowance for the rise of the fluid free surface in the cone neighbor- 
hood. The dis~ibution of pressure and forces acting on the cone is presented in 
terms of elementary functions, and the rate of increase of the cone wetted sur- 
face radim is determined. It is shown that in the limit case of incompreuible 
fluid the obtained resul~ coincide with published data. while in the other limit 
case the derived solution coincides with that for the case of supersonic penetra- 


