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Equations of perfect fluid hydrodynamics are classified with respect to the Cori-
olis parameter, and all essentially different solutions of rank one are indicated,

1, Statement of the problem, Let z and y be Cartesian coordinates, u
and v the velocity components along the 2 and y axes, respectively, and p the pres-
sure ; the density p is assumed constant and equal unity, We consider systems of equa-
tions of the form

Uy + vUy — o = — pg, U + 0y + lu=—py, ur +v, =0 (1.1)

in which the parameter [ (y) can be an arbitrary function of y. For an arbitrary [ (y)
system (1.1) admits a certain group of wansformations G. The special forms of function
1 (y) for which the fundamental group admitted by system (1.1) is wider than G are to
be determined,

Equations (1.1) are encountered in metecrological problems in which the terms [u
and » represent components of acceleration produced by the Coriolis force owing to
the rotation of Earth, and ! (y) is the Coriolis parameter, For [ = 0 system (1,1) coin-
cides with that of the usual equations of hydrodynamics of a perfect fluid, The determi-
nation of the group for this case is given in [1] on the assumption of unsteady flow.

Besides the determination of the group of transformations we shall derive solutions of
rank one, i, e, such which reduce their derivation to the integration of ordinary differen-
tial equations, Some of these solutions were obtained earlier, for instance, in [2] solu-
tions with spiral streamlines are indicated, In the present paper the problem of group
classification of system (1. 1) is solved, optimal systems of one-parameter subgroups are
determined, and all essentially different solutions are indicated, Since the required mech~
anism of group analysis is presented in [3], many intermedjate computations are omitted,

2. Clasmsification of equations. To calculate the coordinates of the infi-
nitesimal operator of the group admitted by system (1.1) it is necessary to write out the
so=called defining equations and to solve these,

1) For any arbitrary function [ (y) the basic operators of the related Lie algebra
are of the form
X, = 8/ ap, X, =48/dx (2.1)

The analysis of determining equations for other forms of function ! (y) yields the
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following results:
2) if Il = y™! (m 5= 1), operatar

2
X31=z%+y‘§y‘+m“5%‘+mv%+2"1p?i @32
is added to the operators(2.1):
3) if | = ™ (m == 0), operator
R ] o 9
XS- = 317-—1— mu?’u— -+ mv-a—v- -+ 2mp 'a-i' (2‘3)

is added to operators (2,1);
4) if | = 1, the fundamental group is generated by five operators with three

operators ] ] 9 d J
=72 i uL e 2p— 2.4
XP=z ty gy tug tVvmy+2Py (@49
* 9 a 3 4 9
Xi=wrr Xs=—ygptig—vygtig

added 10 (2,1), and
5) if | = 0, the group is generated by six operators with operators

] ) 8

4 e — = e—

X3—xax+y6y’ X, Em
o . .0 S .8 2.5
Xs=—Vm+ig " Vu Tl (2.5)

=u Xl tvlopl
added to (2.1). Xo=Ugtv% ™ P

3, Solution for I ==const. Let us construct the essentially different solutions
for the first three cases, For this it is necessary to determine the optimum systems of
one-parameter subgroups and integrate the derived equations, The following notation
is used henceforth: u,, v, and p,are arbitrary constants, and f is an arbitrary function
of its argument,

3.1. I I (y) is an arbiwrary function, the optimum system is generated by operators
(2.1). The subgroup with operator X, is eliminated, since for it the necessary condition
of the existence of an invariant solution is not satisfied, while the subgroup with operator
X, provides a solution dependent on y. The substitution of these into Egs, (1.1) yields
the system

’

w — v =0, w -+ lu=—p, v =0

where the prime denotes differentiation, From the last equation we have p = v,.For
vo == 0 the integration yields

u =uo =+ A (y), P =po ="Mt udr (@ =1()
1f, however, v, = 0, then
u=u+ 1@,  P=p+ 1) [u+I@)dy
In the first case the streamlines are defined by formula
Uy — Vo = Sk (y) dy = const

and in the second the streamlines are in the form of straight lines parallel to the r~axis,
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3,2, For I = y™! the optimum system is generated by operators X,, X4’ and
X, + aX,. The solution for the subgroup with operator X! is of the form

u=z"U@E), v2=2z"V(E), p=2"P{E,t=y/z
The last subgroup yields a solution of the form
u=U(y), v=V{{), p=az+ Py

Substituting into (1.1) and integrating, we obtain the following solution:

1 a
U=Ug+ Y™ — =V V=10

1 o - u,
P=Po+ = — g ¥+ e VT BT

It is assumed that in this case M <=0 and m == — 1.

In meteorological problems the Coriolis parameter is often approximated by a linear
function, which corresponds to m = 2. In this case the streamlines are cubic parabolas,
and the solution may be treated as defining a "crest” type of flow, Meteorological obser-
vations show that such flows result in the formation of fronts with abrupt change of weather,

If m = 0, the solution is of the form

u=u0+lny—%y, V=1,

1
P=Po+oz—zIty+ Zy—ulny

B=U——— Y V=0

1 a Uy
P=pyt+az—zz+-lny + 2

3.3. Let us consider the group for which [ = e™v. The optimum system of one-
parametric subgroups is generated by operators aX,; + X, and Xg? 4+ aX,.
The first subgroup yields solutions of the form

u=U(y), v=V({y), p=ax+ Py
Substituting into system (1.1) and integrating, we obtain

1 a
=3 —_—mY —
u uo+ 4 - Y, V=D,

P=py+az + %[%(my—-i)——;-—muo]e"w

which is similar to that for the crest type of flow,
The solution for the second subgroup is of the form
u=emUE), v=emwV({E), p=e™P{E), {=y—oaz
and the unknown functions satisfy the following system of equations:

UU + V(mU —al’) —V = — P’
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UV 4+ V(mV —aV')+ U = —2mP -+ aP’
U 4+ mV —aV' =0
One of the solutions of this system is
U=a+ v,e*%, V =1ye¥, P = bve*? —a/2m
(a—1)2 _ {—a2 _m
= m(a’—ﬁ_g’ b—m(ai—?_u—i) ! k_a_1

The streamlines Y = const are specified (correct to within the shift along the x-axis)

the formula —_
> rT=y—= 11n(const—%e"‘“>

ma
and represent a set of curves tending to a straight line, This solution can simulate the
flow in a2 cumulative stream,

4, Solutions for constant Coriolis parameter, Before proceeding with
the construction of solution for [ = { and ! = 0, we note that the input system (1.1)
for a constant Coriolis parameter can be replaced by its equivalent system by the substi-
tution of the vortex @ = U, — v, for one of the unknown functions, For ® = ( system
(1.1) is equivalent to the Cauchy-Riemann equations ¥, — v, =0 and u, + v, =0,
which admits an infinite group of wansformations, Because of this we shall subsequently
seek only such solutions in which the vortex is nonzero,

Below it will be necessary to use the input equations in polar coordinates

T =rcos¢, vy =rsing, U=wceose, v =wsing

The expressions for the vortex and the stream functions in these coordinates are
o =cos (¢ — D) (é ws ~— wqa,) — sin (¢ — 9) (wr + % %)
Y, = —wsin (¢ —9), rigs =wcos (¢ —9)

The arbitrary constants of integration of equations in polar coordinates are denoted by
Wy, Poand Qo

4,1, Let us consider the solutions for = 1. The optimum system is generated by

seven operators
PR X1, Xo X Xy, Xy + Xay Xy + Xg Xo + aXy (4.1)

Let us write Eqs, (1.1) in polar coordinates, By combining these and taking into account
trigonometric identities, we can obtain the following system:

2 1
Zps+wsin(@—8)=p,, w¢,twecos(@—8=—7ps ws

cos (¢ — 9) . + = ¢s) — sin (p — 9) (wer —twe)=0

In the same variables the operators X;® and X, assume the form

9 \ é : 8 —_——a—_!._-ﬁ—
X33=r5;—a,-w-b—u;-,—2pap, X5 - T

4,1.1, The subgroup with operator X, does not yield invariant solutions, since the
necessary condition for the existence of such solutions is not satisfied,
4,1,2, The subgroup with operator X, yields solutions which depend only on y.
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Integrating Eqgs, (1.1) we obtain
U=U + Y vV =0y P =P — 2 y® —Ugy, if v,=0

u=—f@ov=0,p=Ff@F, if 2 =0 (4-3)
In the first case the vortex @ = 1 and the sireamlines are represented by a set of para-
bolas, In the second, @ = — f* and the streamlines are straight lines parallel to the

Z=-axis,
4,1,3, For the subgroup with operator X,® we seek the solution in the form w =
rw®), ¢ =®(0)and p =r*P(8). Substituting into (4, 2), we obtain equations

W' 4+ W sin (® —9) =2 P, W cos (O —9) = — P’
cos (P —) WA+ D)L+sin(®—9)W =0

In integrating this system we must consider two cases, depending on whether @' is zero
or not, For (@’ — () the solution is of the form

w =wyrsin(® — @) ¢ =@
p= —-%rzsin’(ﬁ—CPo)

It can be shown that @ = w,. This solution yields streamlines which are parallel
straight lines at angle @, to the z,-axis, Since the direction of coordinate axes was not
specified, the z-axis can be made to coincide with that of the velocity vector, i. e, we
can set @y = (). The absolute value of the velocity vector is proportional to .

The second case, in which @’ == () yields a solution which can be written in the para-
metric form

w=r 2P0 Q= \‘}-l—arcsm(wo -L‘))
T+1° VzF1

+2
p= r’(po+wo =i ) (4.4)
(1 — 2we?) (z 4 1) — 2uwe’
@+1) VI —=bui
For the vortex and the stream function we have

) -_—.(po+—2-arcsin

V 5 2 L 1l
W = -—'——ipo ) \P=‘Po‘% Vzpo"ziil = — Yo + ar® -+ br*sin (28 —2p)
1

P I VAVTS AN N
S VST T VN VY
By a suitable selection of the direction of coordinate axes it is possible to obtain ¢,
equal zero. The streamlines are then defined by formula
a(z* + y?) — 2bzxy + const =0

i, e, they are represented by a set of ellipses in a system of coordinates turned by 45°,
4.1.4. The subgroup with operator X, yields solution of the foorm w = W (r),
¢ =0 +DP(F andp =P (r. Submtuting into (4. 2) we obtain the system

TW’+Wsnn(D=P', Wil +- Weos®d =0
cos(D(W’ ++ W) — sin®@W =0 (4.5)
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The last equation yields the first integral 7W cos @ = w,. We can now write the
generali solution

=2y 1+(%“2%,)2’ ‘P="+mtg<“’°‘;w«)

rt 2
P=py——(+oMN5s

The sweamlines & =@, In—%/, r* / wy 4 const are represented by a set of spiral
lines with a source (w, > 0) or sink (w, << 0) at the coordinate origin, For w,py <<0
the angle € along the streamline monotonically varies, while for W@, > O the mono-
tonicity breaks down, It can be shown by direct calculation that for such flow the vortex
is constant and equal unjty. A similar solution was previously derived in meteorology
41

4,1,5, For the subgroup with operator X; -+ X, the solution is sought in the form
u=U(), v=V(y) and p =2z -+ P (y). Substitution into Eqs, (1.1) and inte-
gration yields

1)0—1
Un

U=uy+ ¥ V=10

vo—i
Do

vn—-

i
P=Dy+Z+ Uy —=5—y", o=

If vy 5= 1, the vortex is nonzero, and the streamlines are parabolas with their axis
parallel to the r-axis, Note that in these formulas », == 0, since otherwise system
(1.1) becomes inconsistent,

4,1,6. For the subgroup with operator X, + X the solution is of the form w =
Wr, o =8 +@(MNandp =6 + P (n.

The unknown functions are determined by system (4, 5) in which —1 / r is to be sub-
stituted into the right«hand side of the second equation. Integration of obtained equa-

tions yields the solution
r ~ \Po 2u?

\ )y i
¢ = ¢ - arctg (%— "—2;:— r”)

1 2 )
P=p+t—(t— )5 —U+od s —alnr

The solution is similar to that derived in 4,1.4,and the vortex w =1 + 1/ w, is
throughout nonzero,

4,1.7, The last subgroup with operator X;® +- a X, generates a solution of the form
w=rW(E), ¢ =0+ D(E)and p =r* P (%), where £ = re-°.

4,2, Let us pass to the derivation of solution for ! == (. Equations (1.1) in polar
coordinates are of the form

w? 1
+ Ps = Py, Wi, = — - Ps (4.6)
cos (¢ — &) <wr - = (Ps> — sin(p —9) (wcp, - é wa> =0

In certain instances the last equation will be presented in 2 somewhat different form by
the substitution for the derivatives of @ of their expressions in the first two equations,
Note that in polar coordinates operators X ;% and X, are of the simpler form
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- w2y
Xz—" or? Xd“wéw‘fz‘p?i

The optimum system of one~-parameter subgroups is generated by eleven operators which
for convenience are divided into two classes

'1) XQ, Xs‘, X51 X34 + XS
2) Xl + sz Xl + X84! X2 + Xﬂ’ Xl + X"‘
X, + Xt + X Xt + Xe Xy + Xo

Direct calculation shows that operators of the first class yield solutions which define
vortex-free flows only, hence, in accordance with the previously stated, we restrict the
analysis to operators of the second class.

4,2.1. The subgroup with operator X, -~ X, yields a wivial solution ¥ =u, —
Y/ vy, v =17, and P = Po. The streamlines are parabolas with their axis parallel
to the z-axis. The constant %, is nonzero, since otherwise system (1.1) becomes incon-
sistent,

4.2.2, For the subgroup with operator X; + X;* we seek the solution of the form
w=W(@®), =D (0) and p=Inr <+ P (9). After substitution into (4.6) we
obtain

W2’ =1, cos (P —0) WO + s5in (® —9) W =0, P =p,

We use the first of these equations for determining W in terms of (O and reduce the

second equation to F" =2 (1 4 F')? ctg F by inwoducing the new function F =
@ — O and substituting F for W . The order of this equation is reduced by one by
setting F' =z (F). The lower order equation is integrated and yields the following
dependence of F on z :

wysin® F = (z + 1)exp< ! )

z-+1
Let us consider z as a parameter, which reduces the derivation of solution to the deter-
mination of one quadrature, The solution itself can be presented in the parametric

form —
w=VL @=0-+F@® p=p+ir

[ iy_JL_. :—-iﬁ
F(t)=arcsm(m). =0~ Voote —1 ( T 41

The vortex ©® = — VE:,e“’*/r is throughout nonzero, The streamlines are repre-
sented by a set of spiral lines, and the solution exists only for wy > e.

4.2,3. The subgroup X, <+ A'¢ generates a solution of the form u =¢* U (y),
v =€e*V (y) and p = ¥ P (y). The substitution of these expressions into Eqgs,(1.1)

ields
y VV' =V =2, P =p 4.7

1f pp = 0, then the solution has the form u = — {;nyoexw.u, = ugestvev, p=0
and the streamlines are straight lines z + v,y = const. But if Py 5= 0, the second
of Eqs, (4. 7), after single integration, yields

V'? = AV: — B (4.8)
where 4 and B are arbitrary constants, Several cases must be considered, depending

on the signs of A and B.
1) If 4 = vy and B/ ve® = — Po® the solution is of the form
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U = — yopoe™ ch (vey + Ug)
v = poe* sh (voy + uy), P = — Y, v,® pa®e®*
If po<< O and vy > 0, the streamlines approach the swraight line y =y, = —
uo / v if, however, p, > 0 and v < 0, the sweamlines move away from the
straight line ¥ = y,. Other combinations of these inequalities yield a similar flow
pattern, except that the direction of the velocity vector changes to opposite,
2) When 4 = v,2and B/ v = p,? ,the integration of Eq. (4, 8) yields the

solution U = — pgpe€” sh (voy + u,)

v = pee” ch(vy + uy), p =15 v’po’e*
The smeamlines have the straight line Y, =— U¢/v, as their vertical tangent and
resemble a flow of the crest type,
3)If A = — »® and B/ v® = po® , the integration of (4. 8) yields

U = — vgpoe™ cos (Vo + Ug)
? = poe* Sin (VoY + Ug), P = —1/; vy’ Po*er®

The solution is periodic with respect to y . The flow is divided into bands ®/v, wide
inside which the direction of the velocity vector monotonically changes to opposite
along the streamlines from one boundary of the band to the other. The flow resembles
that with "contact discontinuity” of equations for a compressible fluid,

The vortex is defined by formula o = p, (v,° —1) €* sin (voy + u,). For
| To | == 1 the vortex is nonzero, For the first two cases it is nonzero for any values
of the constants,

4.2.4, For the subgroups with operatar X; 4 X the solution is sought in the form

=W(r), ¢ =0 - ®(r) and p =9 + P (r). Substituting into (4, 6) and in-
tegrating, we obtain the following solution

w '—_]/1 - ((fo anz\’ ’ ¢ = ¥ —+ arctg ((PO - ‘55:’)3,)
1 0°
P=po+B+gr—(1+ 057 — @ lnr

The constant uw, is assumed to be nonzero, since otherwise the system of equations
would be inconsistent, The vortex is determined by @ =1 / w, , and the solution is
similar to that derived in 4.1, 4,

4.2.5. The solution generated by the subgroup with operator X, -+ Xg* + X
can be represented by w =W (£), ¢ =0 + @ (§) and p =9 -+ P (%), where
¢ = re~® is the new independent variable,

4.2.6. For the subgroup with operator Xs* -+ X, the solution is specified by for-
mulas w =rW(g), ¢ =® (@) and p = r? P (§), where the unknown functions
are determined by equations

P = py, W2 @ =2 py cos (O —8) (W?* + 2p,) + sin (® —¢) WW' =0
For p, =0 the solution of this system is w w,r sin (0—@), @ = @ and p =0,

which in the system of coordinates turned by angle g, corresponds to the Couette type
flow. If po == 0, the solution can be presented in the paramewic form



74 V.L.Katkov

r “po 9= . ( z =3\
w=rV :_-—f-_i.’ P = farCSIn\uo—-:—-:—i)

2 1 o (= 2up?) (3 - 1) — 2w’

—_ r?, ﬁ . = ATCS11) e
P= Do Po- 2 c+1 V1 —dup?

This solution is the same as (4. 4), except for the expression for pressure,
4.2,7. The last subgroup with operator X; - X, generates the solution w =
e W) o =0 + ®(r) and p =€ P (r).
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The self-similar axisymmetric problem of penetration of a blunt rigid cone into
a half-space of perfect compressible fluid is considered in linear formulation.

The problem of penetration of a blunt cone into an incompressible fluid was
investigated theoretically [1—4] and experimentally [3, 5). This problem was
solved for a compressible fluid in [6] on the assumption that the radius of the
intersection circle between the cone and the unperturbed fluid surface {nctreases,
when the penetration velocity exceeds the speed of sound in the fluid (the super-
sonic case),

An exact analytical solution of this problem in the subsonic case is derived
here with allowance for the rise of the fluid free surface in the cone neighbor-
hood, The distribution of pressure and forces acting on the cone is presented in
terms of elementary functions, and the rate of increase of the cone wetted sur-
face radius is determined, It is shown that in the limit case of incompressible
fluid the obtained results coincide with published data, while in the other limit
case the derived solution coincides with that for the case of supersonic penetra-



